Skip to main content

Section 9.2 Solving with Exponents

Objective: Solve equations with exponents using the odd root property and the even root property.

Another type of equation we can solve is one with exponents. As you might expect we can clear exponents by using roots. This is done with very few unex- pected results when the exponent is odd. We solve these problems very straight forward using the odd root property

Odd Root Property: if an=b, then a=bn when n is odd. 

Example 9.2.1.

x5=32 Use odd root property x55=325 Simplify roots x=2 Our Solution 

However, when the exponent is even we will have two results from taking an even root of both sides. One will be positive and one will be negative. This is because both 32=9 and (3)2=9. So when solving x2=9 we will have two solutions, one positive and one negative: x=3 and 3.

Even Root Property: if an=b, then a=±bn when n is even. 

Example 9.2.2.

x4=16 Use even root property (±)x44=±164 Simplify roots x=±2 Our Solution 

World View Note: In 1545, French Mathematicain Gerolamo Cardano published his book The Great Art, or the Rules of Algebra which included the solution of an equation with a fourth power, but it was considered absurd by many to take a quantity to the fourth power because there are only three dimensions!

Example 9.2.3.

(2x+4)2=36 Use even root property (±)(2x+4)2=±36 Simplify roots 2x+4=±6To avoid sign errors we need two equations 2x+4=6 or 2x+4=6 One equation for + , one equation for  4 44 4 Subtract 4 from both sides 2x=2 or 2x=10 Divide both sides by 2 2x2=22 or 2x2=102 x=1 or x=5 Our Solution 

In the previous example we needed two equations to simplify because when we took the root, our solutions were two rational numbers, 6 and 6. If the roots did not simplify to rational numbers we can keep the ± in the equation.

Example 9.2.4.

(6x9)2=45 Use even root property (±)(6x9)2=±45 Simplify roots 6x9=±35Use one equation because root did not simplify to rational +9 +9 Add 9 to both sides 6x=9±35 Divide both sides by 6 6x6=9±356 x=9±356 Simplify, divide each term by 3 x=3±52 Our Solution 

When solving with exponents, it is important to first isolate the part with the exponent before taking any roots.

Example 9.2.5.

(x+4)36=119 Isolate part with exponent +6 +6 Add 6 to both sides (x+4)3=125 Use odd root property (x+4)33=1253 Simplify roots x+4=5 Solve 4 4 Subtract 4 from both sides x=1 Our Solution 

Example 9.2.6.

(6x+1)2+6=10 Isolate part with exponent 6 6 Subtract 6 from both sides (6x+1)2=4 Use even root property (±)(6x+1)2=±4 Simplify roots 6x+1=±2 To avoid sign errors, we need two equations 6x+1=2 or 6x+1=2 Solve each equation 1 11 1 Subtract 1 from both sides 6x=1 or 6x=3 Divide both sides by 6 6x6=16 or 6x6=36 x=16 or x=12 Our Solution 

When our exponents are a fraction we will need to first convert the fractional exponent into a radical expression to solve. Recall that amn=(an)m. Once we have done this we can clear the exponent using either the even (±) or odd root property. Then we can clear the radical by raising both sides to an exponent (remember to check answers if the index is even).

Example 9.2.7.

(4x+1)25=9 Rewrite as a radical expression (4x+15)2=9 Clear exponent first with even root property (±)(4x+15)2=±9 Simplify roots 4x+15=±3 Clear radical by raising both sides to 5th power (4x+15)5=(±3)5 Simplify exponents 4x+1=±243 Solve, need 2 equations! 4x+1=243 or 4x+1=243 1111 Subtract 1 from both sides 4x=242 or 4x=244 Divide both sides by 4 4x4=2424 or 4x4=2444 x=1212, 61 Our Solution 

Example 9.2.8.

(3x2)34=64 Rewrite as radical expression (3x24)3=64 Clear exponent first with odd root property (3x24)33=643 Simplify roots 3x24=4 Even Index! Check answers. (3x24)4=44 Raise both sides to 4th power 3x2=256 Solve +2 +2 Add 2 to both sides 3x=258 Divide both sides by 3 3x3=2583 x=86 Need to check answer in radical form of problem (3(86)24)3=64 Multiply (25824)3=64 Subtract (2564)3=64 Evaluate root 43=64 Evaluate exponent 64=64 True! It works x=86 Our Solution 

With rational exponents it is very helpful to convert to radical form to be able to see if we need a ± because we used the even root property, or to see if we need to check our answer because there was an even root in the problem. When checking we will usually want to check in the radical form as it will be easier to evaluate.

Exercises Exercises - Solving with Exponents

Exercise Group.

Solve

7.

(x+2)5=243

9.

(2x+5)36=21

10.

(2x+1)2+3=21

11.

(x1)23=16

13.

(2x)32=27

15.

(2x3)23=4

16.

(x+3)13=4

17.

(x+12)23=4

18.

(x1)53=32

19.

(x1)52=32

20.

(x+3)32=8

21.

(3x2)45=16

23.

(4x+2)35=8

24.

(32x)43=81