Section 7.2 Multiply and Divide
Multiplying and dividing rational expressions is very similar to the process we use to multiply and divide fractions.
Example 7.2.1.
The process is identical for division with the extra first step of multiplying by the reciprocal. When multiplying with rational expressions we follow the same process, first divide out common factors, then multiply straight across.
Example 7.2.2.
Division is identical in process with the extra first step of multiplying by the reciprocal.
Example 7.2.3.
Just as with reducing rational expressions, before we reduce a multiplication problem, it must be factored first.
Example 7.2.4.
Again we follow the same pattern with division with the extra first step of multiplying by the reciprocal.
Example 7.2.5.
We can combine multiplying and dividing of fractions into one problem as shown below. To solve we still need to factor, and we use the reciprocal of the divided fraction.
Example 7.2.6.
World View Note: Indian mathematician Aryabhata, in the 6th century, published a work which included the rational expression \(\frac{n(n+1)(n+2)}{6} \) for the sum of the first n squares (\(1^2 +2^2 +3^2 + \cdots +n^2\)).
Exercises Exercises - Multiply and Divide
Exercise Group.
Simplify each expression.
1.
\(\frac{8x^2}{9}\cdot\frac{9}{2} \)
2.
\(\frac{8x}{3x}\div\frac{4}{7} \)
3.
\(\frac{9n}{2n}\cdot\frac{7}{5n} \)
4.
\(\frac{9m}{5m^2}\cdot\frac{7}{2} \)
5.
\(\frac{5x^2}{4}\cdot\frac{6}{5} \)
6.
\(\frac{10p}{5}\div\frac{8}{10} \)
7.
\(\frac{7(m-6)}{m-6}\cdot\frac{5m(7m-5)}{7(7m-5)} \)
8.
\(\frac{7}{10(n+3)}\div\frac{n-2}{(n+3)(n-2)} \)
9.
\(\frac{7r}{7r(r+10)}\div\frac{r-6}{(r-6)^2} \)
10.
\(\frac{ax(x+4)}{x-3}\cdot\frac{(x-3)(x-6)}{6x(x-6)} \)
11.
\(\frac{25n+25}{5}\cdot\frac{4}{30n+30} \)
12.
\(\frac{9}{b^2-b-12}\div\frac{b-5}{b^2-b-12} \)
13.
\(\frac{x-10}{35x+21}\div\frac{7}{35x+21} \)
14.
\(\frac{v-1}{4}\cdot\frac{4}{v^2-11v+10} \)
15.
\(\frac{x^2-6x-7}{x+5}\cdot\frac{x+5}{x-7} \)
16.
\(\frac{1}{a-6}\cdot\frac{8a+80}{8} \)
17.
\(\frac{8k}{24k^2-40k}\div\frac{1}{15k-25} \)
18.
\(\frac{p-8}{p^2-12p+32}\div\frac{1}{p-10} \)
19.
\((n-8)\cdot\frac{6}{10n-80} \)
20.
\(\frac{x^2-7x+10}{x-2}\cdot\frac{x+10}{x^2-x-20} \)
21.
\(\frac{4m+36}{m+9}\cdot\frac{m-5}{5m^2} \)
22.
\(\frac{2r}{r+6}\div\frac{2r}{7r+42} \)
23.
\(\frac{3x-6}{12x-24}\cdot(x+3) \)
24.
\(\frac{2n^2-12n-54}{n+7}\div(2n+6) \)
25.
\(\frac{b+2}{40b^2-24b}\cdot(5b-3) \)
26.
\(\frac{21v^2+16v-16}{3v+4}\div\frac{35v-20}{v-9} \)
27.
\(\frac{n-7}{6n-12}\cdot\frac{12-6b}{n^2-13n+42} \)
28.
\(\frac{x^2+11x+24}{6x^3+18x^2}\cdot\frac{6x^3+6x^2}{x^2+5x-24} \)
29.
\(\frac{27a+36}{9a+63}\div\frac{6a+8}{2} \)
30.
\(\frac{k-7}{k^2-k-12}\cdot\frac{7k^2-28k}{8k^2-56k} \)
31.
\(\frac{x^2-12x+32}{x^2-6x-16}\cdot\frac{7x^2+14x}{7x^2+21x} \)
32.
\(\frac{9x^3+54x^2}{x^2+5x-14}\cdot\frac{x^2+5x-14}{10x^2} \)
33.
\((10m^2+100m)\cdot\frac{18m^3-36m^2}{20m^2-40m} \)
34.
\(\frac{n-7}{n^2-2n-35}\div\frac{9n+54}{10n+50} \)
35.
\(\frac{7p^2+25p+12}{6p+48}\cdot\frac{3p-8}{21p^2-44p-32} \)
36.
\(\frac{7x^2-66x+80}{49x^2+7x-72}\div\frac{7x^2+39x-70}{49x^2+7x-72} \)
37.
\(\frac{10b^2}{30b+20}\cdot\frac{30b+20}{2b^2+10b} \)
38.
\(\frac{35n^2-12n-32}{49n^2-91n+40}\cdot\frac{7n^2+16n-15}{5n+4} \)
39.
\(\frac{6r^2-53r-24}{7r+2}\div\frac{49r+21}{49r+14} \)
40.
\(\frac{12x+24}{10x^2+34x+28}\cdot\frac{15x+21}{5} \)
41.
\(\frac{x^2-1}{2x-4}\cdot\frac{x^2-4}{x^2-x-2}\div\frac{x^2+x-2}{3x-6} \)
42.
\(\frac{a^3+b^3}{a^2+3ab+2b^2}\cdot\frac{3a-6b}{3a^2-3ab+3b^2}\div\frac{a^2-4b^2}{a+2b} \)
43.
\(\frac{x^2+3x+9}{x^2+x-12}\cdot\frac{x^2+2x-8}{x^3-27}\div\frac{x^2-4}{x^2-6x+9} \)
44.
\(\frac{x^2+3x-10}{x^2+6x+5}\cdot\frac{2x^2-x-3}{2x^2+x-6}\div\frac{8x+20}{6x+15} \)